Mark Scheme (Results) J anuary 2011

0 Level

GCE O Level Mathematics B (7361/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on +44 1204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
All the material in this publication is copyright
© Edexcel Ltd 2011

Paper 1

1.

(a) 0.0612
B1 1
(b) 0.061

B1 ft $1 \quad 2$
Total 2 marks
2. $S \subset R$

B1
$R \cap H=\varnothing$
B1
2

Total 2 marks
3. $y(3 x+1)=1$
(o.e)

M1
$\frac{1-x}{3 x}$ or $\frac{1}{3 x}-\frac{1}{3}$ or $\frac{1}{3}\left(\frac{1}{x}-1\right)$
A1
4.
(a) $\binom{1}{4}$
B1 1
(b) $\binom{-1}{1}$

B1 $1 \quad 2$
Total 2 marks
5. any multiple of 60

B1
60
B1
2

SC: $2 \times 2 \times 3 \times 5$ only earns B1, B0
Total 2 marks
6.
(a) 1
B1 1
(b) 1
B1 $1 \quad 2$

Total 2 marks
7. seeing 13 or 3.5-2 OR seeing 7 or 3.3-2

B1
6 or -6
B1
2
8. (a) $(B \cup C) \cap A$ or $(A \cap B) \cup(A \cap C)$ or

$$
(A \cap B) \cup(A \cap C) \cup(A \cap B \cap C) \quad \text { B1 } 1
$$

(b) $(A \cap B \cap C)^{\prime}$
or $\quad A^{\prime} \cup B^{\prime} \cup C^{\prime}$
or $\quad(A \cap B)^{\prime} \cup(B \cap C)^{\prime} \cup(A \cap C)^{\prime}$
or any pair of bracketed terms from above joined with \cup

B1 1
Total 2 marks
9. (a) 0.0125 or 1.25×10^{n} or any equivalent correct decimal form (i.e. 0.125×10^{-1}) M1
1.25×10^{-2} A1 2

SC: 1.3×10^{-2}
M1, A0
(b) $1.25(\%)$

B1 ft $1 \quad 3$
10. $5 n-3 n<-24-1$ (o.e)
(allow one sign slip)
M1
$n<-12.5$ (o.e.)
A1
-13
A1 3
Total 3 marks
11. $\frac{3 x+(x-4)+(3-x)+4 x+(5 x-7)}{5}=8 \quad$ (o.e)

M1
$12 x-8=5 x 8 \quad$ (allow 1 slip) M1 DEP
4
A1 3
12. (a) $\left(\begin{array}{cc}-2 & 4 \\ 8 & 6\end{array}\right)$
(b) $\left(\begin{array}{cc}9 & 4 \\ 8 & 17\end{array}\right)$

1 row or column correct
B1
all correct
B1 23
Total 3 marks
13. (a) $\frac{x}{20}$

B1 1
(b) $2 \times{ }^{\prime} \frac{x}{20} "=\frac{x+10}{30} \quad$ (o.e)

5
A1 23
Total 3 marks
14. $\quad($ Hypotenuse $=) \sqrt{a^{2}+b^{2}}$ seen

B1
$\sin \theta=\frac{a}{" \sqrt{a^{2}+b^{2}} "}$
M1
$\sin \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}$
A1 3

Total 3 marks
15. $3 \mathbf{a}-\mathbf{b}=\binom{12}{-5}$
seeing 12 or $3 \times 3-(-3) \quad$ B1
Seeing -5 or 3x1-8 B1
$\sqrt{"(9+3)^{\prime 2}+"(3-8)^{12}} \quad$ (o.e.) M1
13
$\begin{array}{lll}\text { A1 } & 2 & 4\end{array}$
Total 4 marks
16. (a) $\frac{1}{1000} \times 25$

M1

0.025 (km/s)

A1 2
(b) 3600 x " 0.025 "

M1
$90(\mathrm{~km} / \mathrm{h})$
A1 24
Total 4 marks
17. $20=\frac{k}{4^{2}}$

OR $\quad 20=\frac{1}{k \cdot 4^{2}}$
(o.e) M1
$k=320 \quad$ OR $\quad k=\frac{1}{320}$
A1
$t=\sqrt{\frac{20 \times 4^{2}}{40}} \quad$ (o.e.)
M1 DEP
$t=2.83$ (ignore sign)

A1

Total 4 marks
18. $5 \times 2=3 \times x$
(o.e)

M1

$$
(A C=) 3+" 10 / 3 "+4
$$

M1 DEP
4 x " $A C$ " $=A B^{2}$
M1
6.43

A1 $4 \quad 4$
Total 4 marks
19.
(a) $96000 \mathrm{~cm}^{3}$
B1 1
(b) Rate of flow $=\left(\pi 5^{2}\right) \times 4\left(\mathrm{~cm}^{3} / \mathrm{sec}\right)$
\therefore time $=\frac{(" 96000 " / 2)}{\left(\pi 5^{2}\right) \times 4}($ secs $)$
153 (secs)
M1
M1 dep
A1 $3 \quad 4$

Total 4 marks
20. $y^{2}=\frac{2}{x}-5$
$x y^{2}=2-5 x \quad$ or $\quad y^{2}+5=\frac{2}{x} \quad$ M1 DEP
$x\left(y^{2}+5\right)=2$
M1 DEP
$\frac{2}{y^{2}+5}$
A1 44
Total 4 marks
21. $12=x^{2}+x$

M1
$x^{2}+x-12(=0)$
A1
$(x-3)(x+4)=0 \quad$ (solving a trinomial quadratic) M1
3, -4
A1 $4 \quad 4$
Total 4 marks
22. $1.27 \times £ 1250$

M1
$€ 1587.5$
A1
"€1587.5" - €1200 (=€387.5)
M1 DEP
$\frac{" 387.5 "}{1.14}$
M1 DEP
£339.91
A1
5
Total 5 marks
23.
$\begin{aligned} & \text { (a) }(5 x+16)^{2}=(3 x-6)^{2}+(4 x+20)^{2} \\ & 36 x=180 \quad \text { (o.e.) (allow one error in one co } \\ & x=5(\mathrm{~cm}) \\ & \text { (b) } \quad \Delta \text { area }=\frac{1}{2} \times(3 \times " 5 "-6) \times\left(4 \times{ }^{2} 5 "+20\right)\end{aligned}$
(o.e.)
M1
$180\left(\mathrm{~cm}^{2}\right)$
A1 25
24. (a) either $\angle E C B=50$ or $\angle E D C=20$ (stated)

$$
\text { or } \angle D B C=100 \text { (stated) B1 }
$$

$\angle B C D=20$ (can be marked on diagram)
one valid geometrical reason
B1 3
(b) $\angle D A C=30$ (stated)

B1
one valid geometrical reason OR correct angle calculation seen leading to $\angle D A C=30$
PLUS conclusion
B1 DEP 25
Total 5 marks
25. (a)(i) 50

B1
(ii) 40

B1
(iii) 130

B1 3
(b) $\frac{" 50 "}{360} \times 180$

M1

25
A1 25
Total 5 marks
26.
(a) seeing 4 or $4^{3} \quad$ (o.e)
B1
$h t=5 \times 4$
M1
20 (cm)
A1 3
(b) $\frac{480}{S A}=\frac{4^{2}}{1^{2}}$ (o.e)
M1
$30\left(\mathrm{~cm}^{2}\right)$
A1 25
Total 5 marks
27. (a) line having bearing 042 from P B1
line having bearing 090 (drawn from previous line) B1
lines correct lengths B1 3
(b) line having bearing 080 from P B1
line having bearing 110 from A
B1 2
(c) $121 \rightarrow 124 \mathrm{~km} \quad$ (accept answer in range)

B1 $1 \quad 6$
Total 6 marks
28.
(a) 3 or $-2 x$
M1
$3-2 x$
A1 2
(b) $3-2 \times 1.5 \quad$ OR" $3-2 x$ " $=0 \quad$ (o.e.)
M1
$=0 \quad x=1.5$ (o.e)
A1 2
(c) $8+3 \times 1.5-1.5^{2}$
M1
10.25
A1 2
(d) 8.25
$\begin{array}{lll}\mathrm{B} 1 \mathrm{ft} & 1 & 7\end{array}$

Total 7 marks
TOTAL 100 MARKS

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/ ask or on +44 1204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WCIV 7BH

Mark Scheme (Results) J anuary 2011

O Level

GCE O Level Mathematics B (7361/ 02)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on +44 1204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
All the material in this publication is copyright
© Edexcel Ltd 2011

Mathematics B, Mark Scheme

Paper2

1. $\angle A O D=30^{\circ}$

B1
$\therefore \angle O C D$ OR $\angle O D C=15^{\circ}$
$\angle C D E=75^{\circ}$
NB: Award Bs for angles seen on diagram
B1

Total 3 marks

2. (a) $20-x, x, 16-x, 7$ shown on Venn diagram

B3 (-1eeoo) 3
(b) "(20-x)" $+x+$ "(16-x)" $+7=35$ (no slips)

M1 $x=8$

A1 25
Total 5 marks
3. $l=\sqrt{6^{2}+2.5^{2}}(=6.5) \quad$ M1
$\pi \times 2.5 \times$ " $6.5^{\prime \prime}+2 \pi \times 2.5 \times 9+\pi \times 2.5^{2}$
(Sum of 2 correct areas) M1
(Sum of 3 correct areas)
M1 DEP
$212 \mathrm{~cm}^{3}$
A1
Total 4 marks
4.

(a)	$1.5 \times 20000 / 100$	M1	
	300 m	A1	2
(b)	$1.2 \times 100000 / 20000 \mathrm{~cm}$	M1	
	6 cm	A1	2
(c)	$60000 \times(100)^{2} \times(1 / 20000)^{2}$		
	presence of one of $(100)^{2}$ or $(1 / 20000)^{2}$		
	in above formula	M1	
	both	M1 DEP	
	$1.5 \mathrm{~cm}^{2}$	A1 3	
		Total 7 marks	

5. \quad B. $C=\left(\begin{array}{cc}2 & 13 \\ 2 y & y+3 x\end{array}\right)$

B2 (-1 eeoo)
$\left(\mathbf{A}+\mathbf{B} \cdot \mathbf{C}=\left(\begin{array}{cc}5 & 15 \\ 2 y+x & 2 y+3 x\end{array}\right) \quad\right)$
$2 y+x=4$
B1
$2 y+3 x=6$
B1
Elimin. x or y from 2 linear "SEs" in x and y M1
Subst x or y
M1 (DEP)
NB: allow 1 sign slip only for both Ms
$x=1, y=3 / 2$

A1, A1

8
Total 8 marks
B1 1
(b) $1 / 3+1 / 4 \quad$ or $\frac{120+90}{360}$

210/360, 7/12, 0.583, 58.3\%
(c) $\frac{1}{6} \times \frac{1}{4}$ or $60 / 360 \times 90 / 360$

1/24 , 0.0417, 4.17\%
(d) $1 / 3 \times 1 / 4,1 / 4 \times 1 / 3,1 / 6 \times 1 / 4,1 / 4 \times 1 / 6 \quad$ (2 off)
all
$1 / 3 \times 1 / 4+1 / 4 \times 1 / 3+1 / 6 \times 1 / 4+1 / 4 \times 1 / 6$
$1 / 4 \quad, 0.25,25 \%$

A1 2
M1
A1 2
M1

B1
B1
M1
A1 $4 \quad 9$
Total 9 marks
(a)(i) $\overrightarrow{P A}=\frac{4}{5} \mathbf{a}$
(a)(ii) $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ B1 2
(b)(i) $\overrightarrow{A Q}=\frac{4}{9}$ "(b $\left.\mathbf{- a}\right) "$ B1 ft
(b)(ii) $\overrightarrow{P Q}=" \frac{4}{5} \mathbf{a} "+" \frac{4}{9}(\mathbf{b}-\mathbf{a}) "$ M1

OR

$$
\begin{array}{ll}
\overrightarrow{P Q}=-\frac{1}{5} \mathbf{a}+\mathbf{b}-\frac{5}{9}(\mathbf{b}-\mathbf{a}) & \text { (no errors) } \\
\therefore \overrightarrow{P Q}=\frac{16}{45} \mathbf{a}+\frac{4}{9} \mathbf{b} & \text { M1 }
\end{array}
$$

(b)(iii) $\overrightarrow{Q C}=\mathbf{b}-" \frac{4}{9}(\mathbf{b}-\mathbf{a}) "$

OR

$$
\overrightarrow{Q C}=\frac{5}{9}(\mathbf{b}-\mathbf{a})+\mathbf{a} \quad \text { (no errors) } \quad \text { M1 }
$$

OR $\quad \overrightarrow{Q C}=-\times \frac{16}{45} \mathbf{a}+\frac{4}{9} \mathbf{b} "-\frac{1}{5} \mathbf{a}+\mathbf{b}+\mathbf{a}$

$$
\therefore \overrightarrow{Q C}=\frac{4}{9} \mathbf{a}+\frac{5}{9} \mathbf{b}
$$

(c) $\overrightarrow{P C}=" \frac{4}{5} \mathbf{a} "+\mathbf{b}$
and attempting (but NOT using vector division) to show that $\overrightarrow{P Q}=n \overrightarrow{P C}$ and $\overrightarrow{Q C}=m \overrightarrow{P C}$

Either $\overrightarrow{P Q}=\frac{4}{9}\left(\frac{4}{5} \mathbf{a}+\mathbf{b}\right)=\frac{4}{9} \overrightarrow{P C}$
OR $\quad \overrightarrow{Q C}=\frac{5}{9}\left(\frac{4}{5} \mathbf{a}+\mathbf{b}\right)=\frac{5}{9} \overrightarrow{P C}$
[OR Attempting (but NOT using vector division) to show that $\overrightarrow{P Q}=\frac{4}{5} " \overrightarrow{Q C} "$ or $\overrightarrow{Q C}=\frac{5}{4} " \overrightarrow{P Q} "$

$$
\begin{array}{ll}
\overrightarrow{P Q}=\frac{4}{5}\left(\frac{4}{9} \mathbf{a}+\frac{5}{9} \mathbf{b}\right) \text { OR } \quad \overrightarrow{Q C}=\frac{5}{4}\left(\frac{16}{45} \mathbf{a}+\frac{4}{9} \mathbf{b}\right) & \text { A2 }] \\
\text { с.с } & \text { A1 } 4 \text { 11 } \\
\text { Total } \mathbf{1 1} \text { marks }
\end{array}
$$

8. Penalise labelling ONCE only

(a) $\triangle A B C$ drawn and labelled
(b) (i) $A_{1}=(3,1), B_{1}=(7,3), C_{1}=(8,2)$
(ii) $\Delta A_{1} B_{1} C_{1}$ drawn and labelled
(c) $A_{2}=(2,-2), B_{2}=(6,-4), C_{2}=(4,-6)$
$\Delta A_{2} B_{2} C_{2}$ drawn and labelled
(d) (i) enlargement factor 2
(ii) 270°
antclockwise

B1 1
B2 (-1 eeoo)
B1 ft 3
B2 (-1 eeoo)
B1 ft 3

NB: Last B 1 is DEP on previous B and the B in (b) (i)
(OR 90°, clockwise B1, B1 (DEP))
3

OR d(i) enlargement factor -2 B1
d(ii) 270° clockwise B1, B1 (DEP)
OR 90° anticlock. B1, B1 (DEP)
NB: The $3^{\text {rd }} \mathrm{B}$ of (d) is DEP on the $1^{\text {st }}$ and $2^{\text {nd }} \mathrm{Bs}$ of (d)
(e) $\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$
9.

10.
(a) $L=\sqrt{(3 x)^{2}+(4 x)^{2}}$
M1
$5 x$
(o.e)
A1 2
(b) $2 \times \frac{1}{2} \times 3 x \times 4 x+3 x \times 10 x$ OR $\quad \frac{1}{2} \times(10 x+18 x) \times 3 x$ M1

$$
42 x^{2}
$$

(o.e)
A1 2
(c) $2 \times 42 x^{2} "+2 \times " 5 x " \times y+10 x y+18 x y=1008$
M1
" $(10 x+10 x+18 x) y=1008-84 x^{2}$ "
M1 (DEP)
$y=\frac{1008-84 x^{2}}{38 x}$
(c.c)
A1 3
(d) $V=442 x^{2} " \times \frac{1008-84 x^{2}}{38 x}$

$$
\begin{equation*}
V=\frac{21 x}{19}\left(1008-84 x^{2}\right) \tag{c.c}
\end{equation*}
$$

A1 2
(e) One of $\frac{21 \times 1008}{19}$ or $-\frac{3 \times 21 \times 84}{19} x^{2}$ $\frac{21 \times 1008}{19}-\frac{3 \times 21 \times 84}{19} x^{2}$
" $\frac{21 \times 1008}{19}-\frac{3 \times 21 \times 84}{19} x^{2} "=0$
$x=\sqrt{\frac{1008}{252}}$$\quad$ (o.e) \quad (o.e) \quad Asolating x from quadratic in x^{2} only) \quad M1 (DEP)
M1 (DEP)
$x=2 \mathrm{~cm}$

A1 5
14
Total 14 marks
11. Penalise ncc ONCE only
(a) $\sin 35=\frac{E C}{2} \quad$ M1 1.15 cm A1
(b) $\tan 35=\frac{3}{B E}$ 4.28 cm M1 A1 2
(c) $B C=\sqrt{" 4.28^{\prime 2}+" 1.15^{\prime 2}}$ M1
$4.43 \mathrm{~cm}, 4.44 \mathrm{~cm}$
A1 2
(d) $\tan \angle B C E=\frac{" 4.28 "}{" 1.15 "}$
(o.e)

M1
$75^{\circ}, 75.0^{\circ}$
A1 2
(e) $\triangle A B P: \angle B A P=55$ and $\angle A B P=105$

B1
OR $\triangle C P D: \angle C D P=145$ and $\angle D C P=15$
B1
OR $\triangle C E P: \angle C E P=55$ and $\angle E C P=105 \quad$ B1
OR $\triangle B E P: \angle E B P=15$ and $\angle B E P=145 \quad$ B1
$\angle B P A=20^{\circ}, 20.0^{\circ}$
B1 2
(f) X is a pt on $A E$ st $B X$ is perpendicular to $A E$

$$
\begin{aligned}
& \cos 55=\frac{A X}{3} \quad(A X=1.721) \\
& \sin 55=\frac{B X}{3} \quad(B X=2.457)
\end{aligned}
$$

AND
\tan "20" $=\frac{\text { "2.456" }}{P X}(P X=6.748) \quad=>\quad$ M1 $A P=" A X "+$ " X " = "1.721" +"6.748" M1 (DEP)

$$
\text { OR } \begin{aligned}
& \cos 55=\frac{A X}{3}(A X=1.721) \\
& \cos 35=\frac{X E}{44.284 "}(X E=3.5092) \\
& \text { AND } \\
& (D C=2 \times \cos 35=1.6383) \\
& D P=\frac{" 1.6383 " \times \sin 15}{\sin " 20 "}(=1.2893) \\
& A P=" A X "+" X E "+2+" D P "=" 1.721 "+" 3.5092 "+2+" 1.2398 " \\
&
\end{aligned}
$$

$$
\begin{array}{lll}
\text { OR } & \sin 35=\frac{3}{A E}(\mathrm{AE}=5.2303) & \text { M1 } \\
& \cos 35=\frac{C D}{2}(\mathrm{CD}=1.6383) & \text { M1 } \\
& \text { AND } & \\
& \mathrm{DP}=\frac{" 1.6383 " \times \sin 15}{\sin " 20 "}(\mathrm{DP}=1.2398) & \\
& A P=" A E "+E D+" D P "=" 5.2303 "+2+" 1.2398 " & \text { M1 (DEP }) \\
\text { OR } & \sin 35=\frac{3}{A E}(\mathrm{AE}=5.2303) & \text { M1 } \\
& E P=\frac{\sin " 105 " \times " 1.15 "}{\sin " 20 "}(E P=3.2478) & \text { M1 } \\
& A P=" A E "+" E P "=" 5.2303 "+" 3.2478 " & \text { M1 (DEP) }
\end{array}
$$

OR
Special Case : Sine Rule

$$
\begin{array}{ll}
\angle A B P=105^{\circ} & \text { M1 } \\
\frac{A P}{\sin " 105 "}=\frac{3}{\sin " 20 "} & \text { M1 (DEP) } \\
A P=\frac{3 \times \sin " 105 "}{\sin " 20 "} & \text { M1 (DEP) }
\end{array}
$$

$$
A P=8.46,8.47 \mathrm{~cm}, 8.48 \mathrm{~cm}
$$

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/ ask or on +44 1204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

